Selection of an Optimal Set of Discriminative and Robust Local Features with Application to Traffic Sign Recognition

نویسندگان

  • Benjamin Höferlin
  • Gunther Heidemann
چکیده

Today, discriminative local features are widely used in different fields of computer vision. Due to their strengths, discriminative local features were recently applied to the problem of traffic sign recognition (TSR). First of all, we discuss how discriminative local features are applied to TSR and which problems arise in this specific domain. Since TSR has to cope with highly structured and symmetrical objects, which are often captured at low resolution, only a small number of features can be matched correctly. To alleviate these issues, we provide an approach for the selection of discriminative and robust features to increase the matching performance by speed, recall, and precision. Contrary to recent techniques that solely rely on density estimation in feature space to select highly discriminative features, we additionally address the question of features’ retrievability and positional stability under scale changes as well as their reliability to viewpoint variations. Finally, we combine the proposed methods to obtain a small set of robust features that have excellent matching properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic Sign Recognition Using Discriminative Local Features

Real-time road sign recognition has been of great interest for many years. This problem is often addressed in a two-stage procedure involving detection and classification. In this paper a novel approach to sign classification is proposed. In many previous studies focus was put on deriving a possibly most discriminative set of features from a large amount of training data using global selection ...

متن کامل

Towards Real-Time Traffic Sign Recognition by Class-Specific Discriminative Features

Real-time road sign recognition has been of great interest for many years. This problem is often addressed in a two-stage procedure involving detection and classification. In this paper a novel approach to sign representation and classification is proposed. In many previous studies focus was put on deriving a set of discriminative features from a large amount of training data using global featu...

متن کامل

A Real Time Traffic Sign Detection and Recognition Algorithm based on Super Fuzzy Set

Advanced Driver Assistance Systems (ADAS) benefit from current infrastructure to discern environmental information. Traffic signs are global guidelines which inform drivers from near characteristics of paths ahead. Traffic Sign Recognition (TSR) system is an ADAS that recognize traffic signs in images captured from road and show information as an adviser or transmit them to other ADASs. In this...

متن کامل

Image authentication using LBP-based perceptual image hashing

Feature extraction is a main step in all perceptual image hashing schemes in which robust features will led to better results in perceptual robustness. Simplicity, discriminative power, computational efficiency and robustness to illumination changes are counted as distinguished properties of Local Binary Pattern features. In this paper, we investigate the use of local binary patterns for percep...

متن کامل

An Information-Theoretic Discussion of Convolutional Bottleneck Features for Robust Speech Recognition

Convolutional Neural Networks (CNNs) have been shown their performance in speech recognition systems for extracting features, and also acoustic modeling. In addition, CNNs have been used for robust speech recognition and competitive results have been reported. Convolutive Bottleneck Network (CBN) is a kind of CNNs which has a bottleneck layer among its fully connected layers. The bottleneck fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010